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Quantum dimer model with extensive ground-state entropy on the kagome lattice

G. Misguich,* D. Serban,† and V. Pasquier‡
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We introduce a quantum dimer model on the kagome lattice with kinetic terms allowing from three to six
dimers to resonate around hexagons. Unlike the models studied previously, the different resonance loops
appear with differentsigns~given by the parity of the number of dimers involved!. These signs naturally appear
when performing the lowest-order overlap expansion~Rokhsar and Kivelson 1988! of the Heisenberg model.
We demonstrate that the quantum dimer model has an extensive zero-temperature entropy and has very
short-range dimer-dimer correlations. We discuss the possible relevance of this kind of quantum dimer liquid
to the physics of the spin-1

2 Heisenberg model on the kagome lattice.
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I. INTRODUCTION

Quantum frustrated Heisenberg antiferromagnets are
cinating systems that can display a vast variety of exo
phases and phenomena. Systems with strong quantum
tuations where no magnetic long-range order develops d
to zero temperature~‘‘spin liquids’’ loosely speaking! are of
particular interest because they do not have direct class
analogs and are strongly interacting problems that re
many simple theoretical approaches. Focusing on two
mensions and spin-1

2 , two kinds of magnetically disordere
phases are well understood: valence-bond crystal~VBC! and
short-range resonating valence-bond~RVB! liquids. Both are
characterized by short-ranged spin-spin correlations but
VBC has long-ranged singlet-singlet correlations and gap
spin-1 excitations whereas the RVB liquid has short-ran
singlet-singlet correlations, topological order, and spin1

2

~spinon! excitations.
Despite intense theoretical efforts,1–16 the physics of the

spin-12 kagome17 antiferromagnetic Heisenberg mod
~KAFH! is still debated. For instance, there is still no co
sensus on the mechanisms that produce the unusually
density of singlet states that was observed numerically.13,14

Quantum dimer models18,19 ~QDM! are effective ap-
proaches to the phases of antiferromagnets which are d
nated by short-range valence bonds. These models are
fined in the Hilbert space of nearest-neighbor valence b
~or dimer! coverings of the lattice and contain kinetic-
well as potential-energy terms for these dimers. These m
els can often be simpler than their spin parents and are a
nable to several analytic treatments because of their c
relations to classical dimer problems,20 Ising models, andZ2
gauge theory.19,21,22These models can offer simple descri
tions of VBC ~Ref. 18! as well as RVB liquids23,21 and a
natural question is whether QDM can describe other pha
and, in particular, whether they can describe phases
gapless singlet excitations. Motivated by the problem of the
spin-12 KAFH, we investigated some QDM on the kagom
lattice. Because of the corner-sharing triangle geome
dimer coverings can be handled in a much simpler way~with
pseudospin variables5,21! than on other lattices. Exploiting
this property we introduce a QDM~called them model there-
after! with several interesting properties.
0163-1829/2003/67~21!/214413~22!/$20.00 67 2144
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~i! The Hamiltonian allows dimers~from three to six at a
time! to resonate around hexagons with amplitudes that h
nontrivial signs. These signs are those arising when perfor
ing the lowest-order expansion~in the dimer overlap param
eter introduced by Rokhsar and Kivelson,18 see Sec. IV! of
the KAFH Hamiltonian in the valence-bond subspac6

These signs are the crucial difference with the solvable QD
we introduced previously.21 For this reason also quantum
Monte Carlo simulations would face the well-known sig
problem.

~ii ! In addition to the topological degeneracy, a feature
dimer liquids, the ground state has a degeneracy whic
exponential with the number of sites, that is, anextensive
zero-temperature entropy.

~iii ! The ground states have short-ranged dimer-dimer c
relations, they aredimer liquids. We studied the mode
through simple mean-field approximations as well as num
cally and we propose a picture in which the system is criti
~or at least close to a critical point!.

Because some parts of the paper are relatively indep
dent, we will now summarize it so that readers may direc
go to a specific part. In Sec. II we review some results on
KAFH model. Although this paper is mostly devoted to
dimer model ~sort of extreme quantum limit of the SU~2!
spin-12 model!, we find it useful to review well establishe
facts concerning thespin ~Heisenberg! model and we moti-
vate the QDM approach to the KAFH. In particular, in Se
II F, we present numerical results~spectrum and specific
heat! obtained by diagonalizing exactly~on finite-size sys-
tems! the Heisenberg model restricted to nearest-neigh
valence-bonds subspace. In Sec. III we discuss general p
erties of dimer coverings on lattices made of corner-shar
triangles. These properties~existence of pseudospin variable
and their dual representation in terms of arrows! turn out to
be useful to define and analyze QDM on these lattices,
cluding kagome. In Sec. IV we explain the Rokhsar-Kivels
overlap expansion when applied to the family of lattic
mentioned above. At lowest order the kinetic-energy ter
have signs depending on the parity of the number of dim
involved. Ignoring the amplitudes and keeping only the
signs~Sec. V!, we get kinetic~i.e., nondiagonal! dimer op-
eratorsm(h) defined on every hexagonh of kagome and
which realize an original algebra:~i! m(h)251, ~ii ! they anti-
©2003 The American Physical Society13-1
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commute on neighboring hexagon, and~iii ! commute other-
wise. The rest of the paper is devoted to the analysis of
Hamiltonian defined as the sum of all them(h). In Sec. V D
we start by solving exactly the dimer model on a on
dimensional lattice. It sustains critical~algebraic! correla-
tions and has an extensive zero-temperature entropy.
though we did not succeed in finding an exact solution to
we were able to show~Sec. V E! that the kagomem model
also have such a zero-temperature entropy. Some mean
treatments are discussed in Sec. V E 3 and a compe
crystal-like phase is identified. In Sec. V E 7 we introdu
fermionic variables dual to them operators, in which the
residual entropy is quite transparent. This formulation
reminiscent of theZ2 gauge theory in Ref. 21. The last se
tion ~VI ! is devoted to numerical calculations on the kago
m model.

II. SOME RESULTS ON THE KAGOME HEISENBERG
ANTIFERROMAGNET

In this section we review a few results concerning t
Heisenberg model on the kagome lattice.

A. Classical degeneracy

The classical kagome antiferromagnet attracted inte
because of its unusual low-temperature properties. Th
properties are related to the existence of a local and cont
ous degeneracy. Indeed, any spin configuration, that h
vanishing total magnetizationSW 11SW 21SW 350W on every tri-
angle, minimizes the Heisenberg energy. Countingplanar
ground statesamounts to finding the number of ways on
can putA, B, andC on the lattice so that each triangle h
spins along the three different orientations. This already r
resents an extensive entropy.24–26 In a given planar ground
state, one can look for closed loops of typeA2B2A2B2
•••. Because, on kagome, such a loop has onlyC-type
neighbors, rotating the spins of this loop around theC axis
costs no energy and gives new~nonplanar! ground states.
Chalkeret al.27 showed that all ground states can be obtain
by repeated introduction of such distortions into the differ
parent planar states.28 At low temperature this classical spi
system has no magnetic long-range order~LRO! but exhibits
divergingnematiccorrelations when the temperature goes
zero: although spin-spin correlations are short ranged,
planes defined by the three spins of a triangle are correl
at long distances. This phenomenon is a manifestation
‘‘order by disorder’’: thermal fluctuations select groun
states with the largest number of soft modes and these ar
planar ground states.

B. Absence of Ne´el long-range order

It has been known for some time that the spin-1
2 kagome

Heisenberg antiferromagnet has no Ne´el LRO at zero tem-
perature. Early spin-wave calculations by Zeng and Els2

indicated that magnetic order disappears when going f
the triangular antiferromagnet to the kagome model. T
was supported by numerical calculations of spin-spin co
lations in finite kagome clusters up to 21 sites.2 Two years
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later, Singh and Huse4 performed a series expansion about
Ising limit and came to the same conclusion about the
sence of magnetic LRO.

Although the classical model has no Ne´el LRO at T50,
the absence of such an order in the spin-1

2 case is not com-
pletely trivial because quantum fluctuations could selec
particular type of ground state. Sachdev8 showed in the con-
text of a large-N expansion that for a large enough value
the ‘‘spin,’’ a Néel LRO sets in~the so-calledA33A3 struc-
ture!.

In 1993 Leung and Elser9 pushed exact diagonalization
to 36 spins and confirmed the absence of Ne´el LRO. They
also studied four-spin correlations~dimer-dimer! to investi-
gate the issue of a possible valence-bond crystal~or spin-
Peierls, or bond-ordered! phase made of resonating hexago
~see Fig. 1!. They found very weak correlations and su
gested the existence of a liquid phase~they could not, how-
ever, definitely rule out the possibility of a very weak cry
talline LRO order!. Nakamura and Miyashita11 did Monte
Carlo simulations includingN536 andN572 spins, which
showed no kind of spin or dimer ordering down toT.0.2J
~Ref. 29! but found a low-temperature peak in the speci
heat.

On the analytical side, Sachdev8 generalized the SU~2!
model to an Sp(2N) symmetry and worked out a large-N
approach based on bosonic representations. He found a q
tum ordered phase with no broken symmetries and unc
fined bosonic spinons. However, this result does not dire
explain30 the huge density of low-energy singlet states th
was observed numerically and that we discuss below.

C. Low-energy singlet states

Lecheminantet al.13 and Waldtmannet al.14 calculated a
large number of low-energy eigenstates for finite kago
clusters up to 36 sites. These results pointed to a large
sidual’’ entropy at low temperatures. From their data the
sidual entropy per site can be estimated to bes0;0.2 ln(2).
This number was obtained by counting the number of eig
states in a finite~and nonextensive!-energy window above
the ground state. This number was found to scale as;aN

with a.1.15. The width of this energy window is expecte
to modify numerical prefactors31 but nota which is directly
related to the entropy per sites05 ln(a).

FIG. 1. Crystal of resonating hexagons~marked with 0! on the
kagome lattice. Labelsn50,2,4,6 correspond to the possible res
nance loopLn around each hexagon according to Table I.
3-2
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D. Specific heat

The entropy change between zero and infinite tempera
can be extracted from the specific heatcv(T). The first high-
temperature~HT! series expansion for the kagome antiferr
magnet was carried out by Elstner and Young.10 This ap-
proach showed a huge entropy deficit of about 40
*0

`cv(T)/TdT.0.6 ln(2). However, this direct evaluation o
the specific heat from the HT series is not accurate at
temperatures and they concluded the possibility of a lo
temperature peak in the specific heat. A quantum Mo
Carlo simulation by Nakamura and Miyashita11 also found a
low-temperature peak. Such a peak was also found by a d
mation calculation.12 A recent exact diagonalization work b
Sindzingre et al.32 also found such a peak in a 36-sit
sample. An improved method of calculatingcv(T) from
high-temperature series expansion, which is quantitativ
accurate down to zero temperature in most frustra
magnets,33 shows that about 20% of the total entropy is s
missing at very low temperatures,34 in agreement with exac
diagonalizations data.

E. Residual entropy

If a system has a number of states growing exponenti
~with the system size! in a non-extensive energy window
above the ground state, it has an extensive residual entro
zero temperature. In such a case, although the ground
can be unique on finite systems, it is, in fact, exponentia
degenerate in the thermodynamic sense.35 One can construc
some simple models with an extensive residual entropy~the
Ising antiferromagnet on the triangular lattice for instan!
but it is usually lifted by almost any infinitesimally sma
perturbation. An extensive entropy atT50 is not a generic
situation, but instead requires some fine tuning~to zero! of
all these perturbations. For these reasons we think it is
likely that the spin-12 kagome Heisenberg antiferromagn
has aT50 residual entropy. Consider some Hamiltoni
H(l)5H01lH1 , where H0 has an exponential groun
state degeneracy which is lifted byH1 . At small l the spe-
cific heat may have a low-temperature peak whose entr
corresponds to the ground state degeneracy ofH0 . Upon
taking thel→0 limit, the temperature of the peak goes
zero as well. This is the picture we have in mind for the sp
1
2 kagome antiferromagnet and this paper discusses a
sible scenario in which the role ofH0 is played by a quantum
dimer model~defined as them model in Sec. V!.

F. Resonating valence-bond subspace

Quantum dimer models can provide effective descriptio
of some magnetically disordered phases of antiferromagn
We first wish to motivate the restriction of the spin Hilbe
space to the first-neighbor RVB subspace that has been
in a number of works5,6,15,36 for the kagome problem. This
space is generated by all valence-bond states where spin
paired into first-neighbor singlets~dimers or valence bond!.
Because spin-spin correlations are very short ranged,
rather natural to consider the ground-state wave func
as a linear superposition of valence-bond states. The cru
21441
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point is to understand whether valence bonds beyond
neighbors should be included or not in the Hilbert spa
to get~qualitatively! the right physics. We will only partially
address this in this paper. This first-neighbor RVB lim
is the simplest subspace that has an exponential num
of states that could explain the proliferation of low-ener
singlets observed numerically. In addition, this subsp
provides a reasonably good variational energy. Zeng
Elser6 and Mambrini and Mila36 computed the ground-stat
energy of the Heisenberg Hamiltonian restricted to the fi
neighbor RVB subspace.37 For a sample of 36 sites, the
result (2̂ SW i•SW j&520.4218) is 3.8% higher than the exa
ground-state energy obtained9,14 in the full spin Hilbert space
(2^SW i•SW j&520.4384). Zeng and Elser were able to impro
significantly this variational estimate by a simple optimiz
tion of the dimer wave function in the vicinity of each defe
triangle, but without changing the dimension of the Hilbe
space. To our knowledge, this ‘‘optimized dimerizations b
sis’’ is the best variational one for the kagome problem. It
also worth saying that in the fermionic large-N extension of
the Heisenberg model, first-neighbor valence-bond sta
arise as degenerate ground states in theN→` limit.38 1/N
corrections will then introduce a dynamics among the
dimerized states. Marston and Zeng7 used such a fermionic
SU(N) extension of the Heisenberg model on the kago
lattice and found that such 1/N corrections could favor the
crystal of resonating hexagons mentioned above~Fig. 1!.

A last argument for the first-neighbor RVB approach
the kagome problem is the fact that the spectra of the Heis
berg model projected into this subspace reproduce a c
tinuum of singlet states as in the case of spectra compute
the full spin Hilbert space. This was first noticed by Mam
brini and Mila36 on samples up to 36 spins and we extend
their study to samples up to 48 sites. Figure 2 shows

FIG. 2. Kagome Heisenberg antiferromagnet diagonalized in
first-neighbor RVB space. An exponential number of eigenstate
observed in the energy window@E0 ,E01d#, where E0 is the
ground-state energy. The results for two values ofd are shown. The
full lines are quadratic least-square fits to the data forN>18. The

definition of J is such thatH5(^ i , j &SW i•SW j .
3-3
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exponential number of low-energy states in a finite-ene
window @E0 ,E01d# above the ground state. We analyz
this exponential proliferation of energy levels as a funct
of the system sizeand as a function of the energy window
Although we have seven complete spectra up toN548 sites,
the dependence on the width of the energy window make
difficult to give a precise estimate of the low-temperatu
entropy. For each value ofd we plot the logarithm of the
number of states in the window as in Fig. 2. A~least-square!
fit is performed to extract the leading exponential behav
whenN→`. Error bars are obtained in a standard way.39 In
principle, this procedure measures the zero-temperature
tropy provided thatd/J!N. The result is summarized in Fig
3. Unfortunately, one cannot use too small values ofd be-
cause discretization effects scatter the data whend is of the
same order as the typical level spacing in the smal
samples. This is the reason for the increasingly large e
bars we obtain whend is below 0.6;0.8J ~Fig. 3!. However,
from these results it appears likely that a significant part
the total entropy is present at temperatures much lower
the energy scaleJ. Indeed, the values ofs0 compatible with
the set of data displayed in Fig. 3 are 0.1 ln(2)<s0
<0.2 ln(2). Only these values are within the error bars of
estimates fromd50.4J to d51.2J.

Computing the specific heat is another method to look
a possible residual entropy. In the case of the kagome a
ferromagnet diagonalized in the full spin Hilbert space
low-temperature peak was observed,32 as well as in some
experiment on a spin-3

2 kagome compound.40 From its low
sensitivity to an applied magnetic field, this peak was attr
uted~mostly! to nonmagnetic singlet states. In this work w
computed the specific heat of the kagome antiferromagne
the first-neighbor RVB subspace. This calculation is do
from the spectra obtained by numerical diagonalizations
to N548 sites. The results are shown in Fig. 3. The ma
mum of CV(T) aroundT50.7J is almost converged to its
thermodynamic limit. It corresponds to the onset of sho
range correlations. For all sample sizes, a large lo

FIG. 3. For each widthd of the energy window we fit the ex
ponential increase of the number of energy levels to estimate
zero-temperature entropys0 ~as in Fig. 2!. Error bars come from the
uncertainty of the least-square fits.
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temperature peak is present at or belowT50.07J. It is still
size dependent but its entropy roughly corresponds to o
half of the total entropy of the model@the total entropy per
site of the RVB space is13 ln(2)], in agreement with the re
sults of Fig. 4. The similarity between these results and th
obtained in the full spin Hilbert space is another support
the RVB approach.

To summarize, we have reviewed several arguments i
cating that the unusual low-temperature peak in the spe
heat of the kagome antiferromagnet might be explain
within the framework of a RVB space. We would like t
conclude this section by mentioning that the spin-1

2 Heisen-
berg model may have a large number of low-energy sing
states on other lattices made of corner-sharing triangles.
was observed numerically41 on the frustrated three-leg ladde
shown in Fig. 9. We will come back to that model in Se
V D. In Ref. 42 the squagome lattice was introduced a
some low-energy states, reminiscent of the kagome o
were identified in a large-N approach. A decimation metho
applied to this lattice also predicts a low-temperature pea
the specific heat of the model.43 A numerical diagonalization
study of the Heisenberg antiferromagnet on the Sierpin
gasket44 found a low-temperature peak in the specific heat
well.

III. DIMER COVERINGS ON LATTICES MADE OF
CORNER-SHARING TRIANGLES

Before studying the restriction of the Heisenberg sp
model to the valence-bond subspace, we will introduce so
properties of dimer coverings on lattices made of corn
sharing triangles~including kagome!. A very useful property
discovered by Elser and Zeng5 is that dimer coverings on
these lattices can be put in one-to-one correspondence
configurations of arrow variables. Also, this representation
intimately connected to the existence of~Ising-like! pseu-
dospin variables.21

The correspondence between dimer coverings on

he
FIG. 4. Specific heat per site of the kagome Heisenberg mo

restricted to the first-neighbor RVB subspace. The lowest pea
T/J.3.1023 (N548) is a finite-size artifact.
3-4
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kagome lattice andsets of arrowsis illustrated in Fig. 5.
Each arrow has two possible directions: it must point tow
the interior of one of the two neighboring triangles. In
triangle, a dimer connects two sites where the arrows p
inwards. In a defect triangle~without any dimer, marked with
* in Fig. 5!, the three arrows point outwards. Therefore,
each triangle there is a constraint imposing that the num
of incoming arrows is even.

Dimer moves translate very simply in the arrow repres
tation. One can easily verify thatsx(h) ~see Ref. 21 and
Appendix A! does nothing but flip the six arrows sittin
around hexagonh and that such an operation conserves
constraint for all triangles. Any dimer move45 is a product
sx(h1)sx(h2) . . . , whereh1 ,h2 , . . . are the hexagons en
closed in the loops. This operation successively flips all
arrows aroundh1 ,h2 , . . . . Theresult does not depend o
the order in which hexagons are flipped, so thesx operators
obviously commute in this language.

A. Medial lattice construction

The arrow representation~as well as the pseudospin op
eratorssx andsz introduced by Zeng and Elser5,6—see Ap-
pendix A! can be generalized to all lattices made by corn
sharing triangles. The kagome case is the simplest exam
in two dimension, another being the squagome lattice42 ~Fig.
8!. The Sierpinski gasket44 is an example of fractal structur
of dimension between 1 and 2 also made by corner-sha
triangles.

~a! Start with a trivalent latticeH, that is a lattice where
each site has three neighbors~full lines in Figs. 6–10!. The
hexagonal lattice~Fig. 7! is the simplest two-dimensiona
example.

FIG. 5. Arrow representation of a dimer coverings.

FIG. 6. Medial lattice construction. Starting from a trivale
lattice ~full lines! we construct a lattice whose sites~black dots! are
centers of the links. The sites of this new lattice are linked toge
~dashed lines! to form triangular plaquettes.
21441
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~b! Construct its medial lattice K. Sites ofK are, by defi-
nition, the centers of the links ofH. The sites sitting on the
three links ofH connected to the same site ofH are con-
nected together. The medial lattice of the hexagonal lattic
the kagome lattice. SinceH is trivalent,K is made of corner-
sharing triangles.

~c! Associate a pseudospin to each plaquette ofH ~i.e., to
hexagons of the kagome lattice in the example!.

In the following, we will useN for the number of sites in
K, which is equal to the number of links inH. The number of
sites in H will be 2N/3, which is equal to the number o
triangles inK. The number of plaquette~or faces! in H is
equal to the number of pseudospins, we write itNps. For
two-dimensional cases we can apply Euler’s relation to
latticeH and we find (2N/3)2N1Nps5222g whereg is its
genus (g51 for a torus,g50 for a sphere!.

B. Counting dimer coverings with arrows

The number of dimer coverings of any lattice of typeK
~including, for instance, the one-dimensional examples
Figs. 9 and 10! is

Ndim. coverings52N/311. ~1!

This result can be obtained with the arrow representat
Each arrow has two possible directions, which giveN

states. The fact that there can only be zero or two incom
arrows for each triangle introduces one constraint per

r

FIG. 7. Kagome lattice~dashed lines and black dots! con-
structed as the medial lattice of the hexagonal~full lines! lattice.
The locations of the pseudospins are indicated by up spins.

FIG. 8. Squagome lattice~dashed lines! as the medial lattice of
the octagonal lattice.
3-5
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angle. There are 2N/3 triangles but only 2N/321 constraints
are really independent, which gives Eq.~1!.

The fact that 2N/321 constraints are independent can
checked with the following argument. We focus on the triv
lent lattice H on the bond of which the arrows live. Firs
transformH into a tree by recursively cutting every bond th
does not disconnect the lattice into two parts. The final tre
still trivalent so the number of leaves,L, is related to the
number of vertices,V, by L5V12. Each bond gives two
leaves when it is cut so thatL/2 is the number of cuts. On
can now set the arrow directions on the leaves. There areL/2
such independent arrows. Using the constraints assoc
with each vertex, the arrows are then determined on all o
bonds of the tree by progressively going from the lea
toward the root. It is simple to check that the last constra
encountered when reaching the root is automatically sa
fied. From this we obtain 2L/252V/211 dimer configurations,
which is equivalent to Eq.~1! since 3V52N.

IV. FROM SPINS TO DIMERS: OVERLAP EXPANSION

When restricted to the RVB subspace, the Heisenb
model induces a complicated dynamics on valence bo
This dynamics is intimately related to the nonorthogona
of these valence-bond states, which we describe below.

A. Scalar product and loops

The scalar product of two valence-bond states can
computed from their transition graph46 ~loop covering ob-
tained by drawing both dimerizations on the top of ea
other!. We first need a sign convention for valence-bo
states. A simple choice is to orient all the bonds so that
hexagons are clockwise47 ~see Fig. 11!. With this choice, the
scalar product of two valence-bond statesua& and ub& is

^aub&5 )
Loops

@~1/2!L/221~21!11Nhex1L/2#, ~2!

where the product runs over nontrivial~of length.2) loops
in the transition graph ofa andb, L is the length of the loop,
andNhex is the number of hexagons enclosed by a loop.
instance, the loop displayed in Fig. 11 hasNhex53. The fac-
tor (1/2)L/221 in Eq. ~2! is valid on any lattice whereas th

FIG. 9. A frustrated three-spin ladder~dashed lines! obtained as
the medial lattice of~trivalent! two-leg ladders.

FIG. 10. Another example of chain.
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signs (21)11Nhex1L/2 are associated with the corner-shari
triangle geometry.48 The sign of ^aub& would just be
(21)L/2 if all the bond dimers were oriented clockwis
around the loops. Consider the triangles on which a lo
passes. We classify these triangles in four types (a, b, c and
d) as follows. Some havetwo edges on the loop~typesa and
c in Fig. 11! and the others have onlyone ~typesb andd).
Some areinside the loop~typesa andd) and the others are
outside(b andc). Triangles of typea give two counterclock-
wise bonds and the (21) factors cancel. Every triangle o
type b ~c! gives one~resp. two! clockwise bond~s! and does
not contribute to the sign. Each triangle of typed gives a
counterclockwise bond and contributes by a factor (21) to
the scalar product. LetNd be the number of such triangles
So far we have shown that sign@^aub&#5)Loops
(21)Nd1L/2. Using the arrow representation~and the associ-
ated constraint! one can show that (21)Nd5(21)Nhex11.
The argument—not reproduced here for brevity—uses
fact that the parity of arrows coming out and in of a giv
cluster of sites is fixed by the number of links and sites
that cluster, and is thus related to the number of hexag
enclosed by the loop.

Rokhsar and Kivelson18 generalized the scalar produ
given by Eq.~2! by giving two arbitrary fugacitiesx and y
that couple to the number and to the length of the loops:

^aub&x5Vxa,b5 )
Loops

@yxL/2~21!11Nhex1L/2#, ~3!

x and y can be considered as formal expansion parame
(x51/2, y52 in the physical spin-12 case!. The choicey
52 is usually adopted in the literature6,18 but we will keepy
explicit so that other cases may be considered. Whenx→0
the overlap matrixVx becomes diagonal.

B. Rokhsar and Kivelson scheme

When restricted to the first-neighbor RVB space, t
Heisenberg Hamiltonian induces a dynamics on vale
bonds. These valence-bond states are not orthogonal, s
have a generalized eigenvalue problem. Orthogonalized
lence bond statesuã& can be obtained:

FIG. 11. Transition graph between two dimer coverings. T
bonds are oriented so that all hexagons are clockwise. The
passes through four types of triangles:~a!–~d! ~see text!.
3-6



e

ui

it

-

ne
e-

d

r-

b

rn

B

of
l
nd
del.

he
on-

el.

nd
ible

QUANTUM DIMER MODEL WITH EXTENSIVE GROUND- . . . PHYSICAL REVIEW B 67, 214413 ~2003!
uã&5(
b

~Vx
21/2!abub& ~4!

and the matrix to diagonalize is

H ab
eff~x!5^ãuHub̃&x ~5!

5 (
a8b8

~Vx
21/2!aa8^a8uHub8&x~Vx

21/2!bb8 ~6!

where H is the Heisenberg Hamiltonian,H5(^ i j &SW i•SW j .
From now we will only deal withorthogonalizedvalence-
bond statesuã& but we will drop the tilde for clarity.
H eff(x51/2) was diagonalized numerically to obtain the r
sults of Fig. 2 and 4~see also Refs. 6 and 36!. Heff(x.0) is
nonlocal and many dimers can hop simultaneously to q
different configurations. However, sincex5 1

2 ,1, the tunnel-
ing probability for such events decreases exponentially w
the loop length. Up to orderxn, H eff(x) is local and only
contains terms with<n dimers. Following Rokhsar and Kiv
elson’s work on the square lattice,18 Zeng and Elser5,6 con-
sidered the small-x expansion ofH eff on the kagome lattice
up to orderx6. Up to a constant we have

H eff~x!52(
h,a

ha~x!uLa&^L̄au1H.c.1O~x6! ~7!

where the sum onh runs over all hexagons, the sum ona
runs over all the loops enclosing a that hexagon. The tun
ing amplitudesha(x) are given in Table I. These results r
duce to Zeng and Elser’s6 wheny51/x52. Notice that other
terms of orderx6 exist and involve six-dimer moves aroun
two hexagons.

Equation~7! can be obtained from the scalar product fo
mula. The latter is valid for any latticeK made of corner-
sharing triangles~see Sec. III A! and Eq.~7! can be general-
ized to these lattices. Now hexagons are replaced
plaquettes of latticeH. Consider a loopa encircling a single
plaquette. It has a lengthL and enclosesNt triangles. The
amplitudeha(x) for that dimer move is

ha~x!5 1
2 y~2x!L/2~L2yNt!1O~xmin

L !, ~8!

where Lmin ~equal to 6 for kagome! is the size of the
plaquettes ofH. Unlike the square18 or the triangular lattice
case,23no sign convention for the dimer coverings can tu
the signs of the amplitudes ha all equal.

V. QUANTUM DIMER HAMILTONIAN

In Ref. 21 we introduced a solvable model:

H052(
h,a

uLa&^L̄au1H.c.52(
h

sx~h!, ~9!

where the pseudospin operatorssx(h) are the kinetic-energy
terms defined in Table I~see also Appendix A!. This model is
obtained by settingha51 in Eq. ~7!. We showed21 that Eq.
~9! is completely solvable and is the prototype of the RV
dimer liquid. It has a unique ground state~up to a topological
21441
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degeneracy! and its elementary excitations are pairs
gapped Ising vortices~visons!. Here, we search for a mode
that, as Eq.~9!, is amenable to an analytical treatment a
that can capture some essential features of the spin mo
The first step in treating the frustration inherent to t
Heisenberg model on the kagome lattice is to introduce n
trivial signsin the dimer resonance loops.

A. Definition of µ„h…

We choose to keep only the sign of the leading termsha
of the dimer overlap expansion for the Heisenberg mod
This leads to the definition of an operatorm(h) at each pseu-
dospin locationh ~hexagon centers in the kagome case!:

m~h!5 (
a51

32

e~a!uLa&^L̄au1H.c. ~10!

where

e~a!5~21!Length(a)/2 ~11!

TABLE I. The eight different classes of loops that can surrou
a hexagon. Including all possible symmetries, we find 32 poss
loops.L/2 is the number of dimers involved andha is the tunneling
amplitude~at lowest order! associated with each loop in a small-x
expansion of the Heisenberg model in the RVB space~see text!. The
value for the physical casey51/x52 is given.
3-7
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G. MISGUICH, D. SERBAN, AND V. PASQUIER PHYSICAL REVIEW B67, 214413 ~2003!
and Length(a) is the length of the loopa. The action of
m(h) only differs from the pseudospin flipsx(h) by a sign:
m(h)uD&56sx(h)uD&. This sign depends on the length
the admissible loop ath in stateuD&, as indicated in Table I
With this definition, if uc& is a ~nonorthogonalized! dimer
configuration, we havêcum(h)uc&>0 for any hexagonh.
This can be used to define the signs of the matrix elemen
m independently of the orientation of the dimers.

As for sx, m can be simply expressed in terms of t
arrow representation introduced in Sec. III. Let 1,2, . . . ,6 be
the sites of hexagonh and 18,28, . . . ,68 be the sites of the
‘‘star’’ surrounding this hexagon~see Fig. 12!. The length of
the admissible loopa0 aroundh is related to the state of th
arrows on 18,28, . . . ,68 in the following way. If the arrow at
site i 8 is pointing towardh, it shares a dimer with a sitej
belonging to the hexagon anda0 will pass throughi 8 and j.
Let nout be the number of outgoing arrows. From this it
clear that the length of that loop will be Length(a0)512
2nout. To summarize, the operatorm(h) defined in Eq. 10
flips the arrows of sites 1,2, . . . ,6 andmultiplies the configu-
ration by a sign49:

e~h!5~21!nout(h)/2. ~12!

The operatorsm can be explicitly written with the help o
sz andsx operators. Finding such an expression is not co
pletely obvious sincesz are nonlocal and depend on th
reference configuration, whereasm are local and independen
of any reference state. The expression is derived in
pendix B.

B. Commutation rules

1. Operator µ

The m operators have the remarkable property of~1! an-
ticommuting when they operate on nearest-neighbor he
gons but~2! commuting otherwise. This property is not o
vious when looking at Eq.~10! and is most easily
demonstrated with the help of the arrow representations
mentioned previously, the effect ofm(h) on an arrow con-
figuration is to flip the arrows around hexagonh and multi-
ply it by a signe(h)5(21)nout(h)/2. Therefore, the actions o
m(A) andm(B) commute up to a sign. If hexagonsA andB

FIG. 12. The position of incoming arrows on sites 18,28, . . . ,
defines the possible dimer move~full and dashed links! around the
hexagon. The arrows at sites 1,2, . . . ,6 are omitted for clarity; they
take opposite directions in the dimerizations pictured by full a
dashed dimers, respectively. The arrows at 18,28, . . . , are un-
changed during this dimer move.
21441
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are not adjacent, the signse(A) ande(B) are unaffected by
the action ofm(B) and m(A), respectively, andm(A) and
m(B) commute. For two neighboring hexagonsA andB, the
action ofm(A) affects the signe(B) and conversely. There
are two types of arrow configuration shared by the neighb
ing hexagonsA and B, as shown in Figs. 13~a! and 13~b!.
Both configurations have an odd number of outgoing arro
among the four external links, which will be flipped by th
successive actions ofm(A) andm(B). One of the signse(A)
and e(B) will therefore be changed by the action of th
neighboringm, but not the other. This means that upon a
ing with m(A) andm(B), the sign of the final configuration
depends on the order we applied the two operators, and
find that on any configurationm(A)m(B)52m(B)m(A).

2. Operator µ̃

Another choice for the signs of the tunneling amplitud
turns out to be very useful. Consider them̃ operators defined
by

m̃~h!5 (
a51

32

ẽ~a!uLa&^L̄au1H.c., ~13!

where the signsẽ(a) are given in the last column of Table
Contrary toe(a), ẽ(a) counts the parity of the number o
outgoing arrows only on one-half of the sites of the st
18, 38, and 58. Using the arrow representation and simil
arguments as above, one can show that~1! m̃ operators anti-
commute when acting on nearest-neighbor hexagons~2!

commute otherwise. Most interestingly,m andm̃ realize two
copies of the same algebra that commute with each othe

; h,h8@m~h!,m̃~h8!#50. ~14!

The m ~and m̃) operators have simple commutation rel
tions with the pseudospin operatorssz introduced by Zong
and Elser~ZE!. By definition, them operators can be written
asm(h)5e(h)sx(h), wheree(h) is diagonal operator in the
dimer basis. Becausesz operators are also diagonal in th
basis they commute with anye and we simply have
m(h)sz(h)52sz(h)m(h) and @m(h),sz(h8)#50 for h
Þh8 ~see Appendix A for the commutation rules ofsx and
sz operators!. The same result holds form̃. In Ref. 21 we
identifiedsz(h) as the operator that creates~or destroys! an
Ising vortex~vison! on hexagonh and a nonzero expectatio
value ^sz& was interpreted as the signature of confinem
and vison condensation.

d

FIG. 13. Two possible states of a pair of triangles.
3-8
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C. Hamiltonian

The main results of this paper concern the followi
quantum dimer model:

Hm52(
h

m~h!, ~15!

where them obey the commutation rules described in t
preceding section. We studied this model both numeric
and analytically. Numerically we diagonalized it on syste
up to 144 kagome sites~48 hexagons!. The results are pre
sented in Sec. VI. The most striking feature of the spectr
is that all energy levels have a huge extensive degenerac
order 2Nps/2, where, in the kagome case,Nps5N/3 is the
number of hexagons. The degeneracy of the spectrum ha
origin in the existence of the set of operatorsm̃(h), which
commute withm, and therefore withHm . The spectrum is
organized in 2Nc sectors labeled by the eigenvalues of theNc
independent commuting operators, which can be constru
from m̃, as explained in Sec. V E 5. The eigenvalues
identical in all the 2Nc sectors. Another interesting feature
the existence of quantities that commute both withm and
with m̃, called in the following integrals of motion. They ar
constructed from products ofm ~or alternatively m̃) on
straight lines drawn on the triangular lattice of pseudosp
as explained in Appendix E. The spectrumdependson the
values of these integrals of motion.

Using operatorsm̃, the dimer-dimer correlations in th
model can be shown~Sec. V E 6 and Appendix D! to be
short ranged.

D. One-dimensionalµ-model

Before discussing the kagome case in more detail, i
interesting to look at them model on the one-dimensiona
lattice displayed in Fig. 9. As on any lattice made of corn
sharing triangles, them model can be defined there. Th
different dimer moves@and their signse(a)] are displayed in
Fig. 14. Because it is one-dimensional, it is solvable and
will show that its spectrum exactly maps to the spectrum
the transverse-field Ising chain at the critical field~quantum
critical point!.

1. Transverse-field Ising chain

The mapping to the transverse-field Ising chain can
realized through a representation of the algebra ofm by some
pseudospin operatorstx andtz defined by

t2n
x 5m2n , t2n11

x 5m̃2n

FIG. 14. The eight possible dimer moves around a squ
plaquette of the frustrated ladder shown in Fig. 9. The signs of
corresponding amplitudes in them model are indicated.
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t2n
z 5)

l<n
m2l 21 , t2n11

z 5)
l<n

m̃2l 21 . ~16!

Using the~anti!commutation relations ofm and m̃ it is easy
to check thatt i

x and t i
z anticommute. Them (m̃) operators

only involve the Ising pseudospins on even~odd! sites:

m2n5t2n
x , m̃2n5t2n11

x

m2n115t2n
z t2n12

z , m̃2n115t2n11
z t2n13

z . ~17!

And them Hamiltonian on the chain is now simply

Hm52(
n

t2n
x 2(

n
t2n

z t2n12
z ~18!

which we recognize to be that of a ferromagnetic Ising ch
in transverse field at its critical point.50 This model can be
solved by a Jordan-Wigner transformation~reduces to free
fermions!. Because the Ising chain is at its critical point, t
dimer spectrum is gapless and supports linearly disper
excitations at small momentum. In addition,^m im j& correla-
tions decay algebraically with distance. The exponential
generacy ofHm is now transparent: only one-half of the Isin
spins ~located on even sites! appear to be coupled by th
Hamiltonian. However, this entropy has a subtle origin:
write the m model only in terms of the Nps/2 ‘‘coupled’’
degrees of freedom~in order to get rid of the entropy! one
has to use operators (t2n

z ) which are nonlocal for the origina
dimers @see Eq.~16!#. On the other hand, there are loc
operators~the m̃ themselves! that do not change the energ
and that create localized zero-energy excitations.

We can make a comparison with another quasi-o
dimensional model with extensive degeneracy: the spi1

2

Heisenberg model defined on a chain of coupled tetrahed51

In that model some Ising-like degrees of freedomx561
~spin chirality! do not appear in the Hamiltonian of the low
energy sector and the model has an extensive z
temperature entropy. This situation seems analogous to thm
model: t2n11

z play the role ofx. However, the important
difference is thatt2n11 are nonlocal in terms of the origina
dimers, whereasx are local in terms of the original spins.

We will see in the following sections that them model on
the kagome lattice also has this important property that
‘‘coupled’’ Ising degrees of freedom are nonlocal in terms
dimers. We are not aware of any other interacting quant
model exhibiting such kind of extensive degeneracies. Th
might be, however an analogy with other systems with loc
ized excitations such as in Aharonov-Bohm cages52 or flat-
band systems in general. There, the extensive degenera
due to destructive interferences that prevent excitations f
hopping on the lattice and thus gaining kinetic energy
delocalization. This stresses again the role of the signs in
m operators.

2. Order parameter

The mapping to the transverse field-Ising chain sugge
to introduce a different coupling form on odd and even sites

re
e

3-9
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H~G!52G(
n

m2n2(
n

m2n11 ~19!

52G(
n

t2n
x 2(

n
t2n

z t2n12
z , ~20!

so thatG is the strength of the transverse field. It is know
that the ground state has^t2n

x &Þ^t2n
z t2n12

z & except at the
critical point G51. In other words,m have different expec-
tation values on odd and even sites forGÞ1. This state (G
Þ1) has long-ranged̂m im j& correlations and is a crystal i
the ^m& variables with a diverging structure factorS(p)
5(n(21)n^m0mn&. It is interesting to remark that from th
Ising point of view the natural order parameter is the ‘‘ma
netization’’ ^t2n

z &, which is nonzero for theG,1 phase but
vanishes forG>1. This order parameter is nonlocal in term
of the dimers@see Eq.~16!#. However, this does not mea
that for G,1 the dimer system spontaneously breaks so
hidden Ising symmetry. There is no such Ising symmetry
the dimer problem and the spuriousZ2 redundancy was in-
troduced in the Ising representation: reversing alltz gives, in
fact, thesamephysical dimer state, as can be seen from
~17!. In the dimer language, this is a consequence of
fact that reversing all the arrows twice is proportional to t
identity.

3. Heisenberg model on a frustrated ladder

The spin-12 Heisenberg model on the three-spin ladd
shown in Fig. 9 has been studied by Waldtmannet al.41 They
considered aJ-J8 model where the horizontal coupling isJ
and the diagonal one~around square plaquettes! is J8. From
their numerical results~exact diagonalizations forN<30
spins and density matrix renormalization group~DMRG! for
N<120 spins! it appears that the system may be critical
the region 0.5&J8/J&1.25 ~vanishing spin gap! and that a
spin gap opens forJ8/J*1.25. Quite interestingly, they
showed that atJ5J8 the specific heat is quantitatively ver
similar to that of the kagome antiferromagnet and exhibit
low-temperature peak. The finite-size spectra also sho
large density of singlet states above the ground state~al-
though probably not exponential inN). These similarities
suggest that the corner-sharing triangle geometry is an
portant ingredient to generate a large amount of low-ene
singlet excitations and it would be interesting to investig
the possible relation between this three-spin ladder and thm
model.

4. Exact spectrum via fermion representation

In the mapping to the transverse field-Ising chain,
have neglected subtleties associated with boundary co
tions as well as constraints on the physical space of di
coverings. Indeed, the latter has dimension 2N/311 whereas
we used a representation of dimension 2Nps52N/3. We shall
now present the full solution of them model on the chain,
using fermionic variables.

Since we are interested mainly in the spectrum, we w
realize the algebra ofm j operators in a space that has t
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right dimension of the dimer space, that is, 2Nps11. There
exists an exact mapping between the fermionic states and
dimer states, but we do not insist on it here. We supp
periodic boundary conditions and takeNps even.

Let us introduce a pair of creation/annihilation fermion
operatorscj ,cj

† at each sitej 51, . . . ,Nps. They are equiva-

lent to a pair of Majorana fermions,g j5(cj
†1cj ), g̃ j

52 i (cj
†2cj ), g j

25g̃ j
251. We construct operatorsm j as fol-

lows:

m j5 ig jg j 11 , m̃ j5 i g̃ j g̃ j 11 , ~21!

so that

Hm52(
j 51

Nps

m j52 i (
j 51

Nps

g jg j 11 . ~22!

It is straightforward to check that two operatorsm i , m j an-
ticommute if they are neighbors and commute otherwise;
same is valid for operatorsm̃ j , while m i and m̃ j always
commute.

We have not yet specified the periodicity conditions
operatorsg j . Let us introduce two extra kinetic operator
m(u) and m(d), which move the dimers around the tw
edges~or Nps-gones! of the chain

m~a!5 (
a51

2Nps21

e~a!~ uLa&^L̄au1H.c.!, a5u,d

where a runs over 2Nps21 possible loops of even lengt
around the edge ande(a)5(21)Length(a)/2. They mutually
commute and anticommute with allm j , j 51, . . .Nps. Their
productm(u)m(d) commutes with the Hamiltonian and it i
an integral of motion, taking values61. Other two integrals
of motion are the products ofm j on the even~odd! sites,
mo5m1m3 . . . mNps21 (me5m2m4 . . . mNps

). A careful

analysis shows thatmomem(u)m(d)5(21)3Nps/2 on any
dimer state. This constraint on physical states shows tha
dimension of the Hilbert space is 2Nps11. Suppose now we
are in the sector with m(u)m(d)51. Then, mome
52(21)Nps/2m1m2 . . . mNps

, and using the definition from

Eq. ~21! we obtain thatg1gNps11521, which implies anti-
periodic boundary conditions on the Majorana fermions.
the second sector,m(u)m(d)521, the Majorana fermions
have periodic boundary conditions.

We have now all that we need to solve model~22!. First,
all the spectrum is degenerate 2Nps/2 times, since all theNps

Majorana fermionsg̃ j commute with the Hamiltonian. Then
the Hamiltonian~22! can be diagonalized after a Fourie
transformation,

Hm52(
k

sinkg2kgk , ~23!

where the sum is over momentak52pn/Nps, with n being
an integer in the periodic sector a half-odd integer in
antiperiodic sector, 0<n,Nps. The operatorsgk with 0,k
,p (2p,k,0) could be interpreted as annihilation~cre-
ation! operators. Note that, in order to ensure the right co
3-10
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mutation relations between creators and annihilators, we
fined the Fourier modes asgk51/A2Nps(neikngn . The zero
modesk50,p need a separate treatment, but they do
appear in the Hamiltonian. After normal ordering,

Hm54 (
0,k,p

usinkug2kgk22 (
0,k,p

usinku. ~24!

The vacuum energy is easily calculated in the two secto

E0
(2)522 (

n50

Nps/221

sin
p~2n11!

Nps
52

2

sin~p/Nps!
,

E0
(1)522 (

n51

Nps/221

sin
2pn

Nps
52

2

tan~p/Nps!
. ~25!

Since E0
(2),E0

(1) , the ground state of the dimer proble
has energyE05E0

(2)522/sin(p/Nps). In the thermody-
namic limit E/Nps→22/p. The first-excited state is atE0

(1) ;
the rest of the spectrum can be constructed by mak
particle-hole excitations over the two fermionic vacua, a
cording to Eq.~24!. The numerical spectra, obtained in th
dimer representation, are in complete agreement with th
constructed from Eq.~24!. In the thermodynamic limit, the
gap vanishes and the excitation spectrum ofgk is linear at
small momentum.

E. Kagome case

1. Degenerate representation

As we did in the one-dimensional case, it is natural
represent them operators with Ising variables. The simple
representation uses one Ising variabletz561 at each
hexagon:

m r5t r
x)
i 51

3

t r1ei

z , m̃ r5t r
x)
i 51

3

t r2ei

z , ~26!

where the three unit vectorsei are at 120 deg and relate a si
to three of its neighbors on the triangular lattice. It is easy
check that this representation indeed realizes them ~and m̃)
algebra. One can, in fact, expressm in terms of ZE pseu-
dospin operatorssz and find similar~although more compli-
cated! relations~see Appendix B!. Notice, in particular, that
tz anticommutes withm and m̃ on the same hexagon bu
commutes with all the others, exactly assz do. This repre-
sentation has~approximately! the correct size of the Hilber
space (;2Nps), but it does not show how many Ising var
ables decouple in this model, that is how large is, the deg
eracy~entropy! in this model.

2. Three-sublattice representation

One can use a different representation for them ’s on a
smaller subspace, therefore removing part of the degene
Consider a decomposition of the triangular lattice intothree

sublatticesA,B, and C. All the m̃(c) with cPC commute
with each other~as well as with all them). They can be
21441
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simultaneously diagonalized so that we can consider
eigenstateuc0& of thesem̃(c):

m̃~c!uc0&5h~c!uc0&, h~c!561. ~27!

In addition, we may define some operatorss(h) by

s~h!5m~h!m̃~h!. ~28!

They are diagonal in the dimer basis and commute with e
other. We can projectuc0& onto the subspace, wheres(c)
5h(c) for any sitecPC:

uc1&5 )
cPC

S 11h~c!s~c!

2 D uc0&, ~29!

which, by Eq.~27!, is simply

uc1&5 )
cPC

S 11m~c!

2 D uc0&. ~30!

Now we consider the states generated by the action
m(aPA) and m(bPB) on uc1&. A basis can be labeled b
2Nps/3 Ising variablesta

z561 andtb
z561 as follows:

uta
z ,tb

z&5F )
aPA

m~a!1/2(11ta
z)GF )

bPB
m~b!1/2(11tb

z)G uc1&.

~31!

As we will now show, this subspace is stable under the ac
of anym. This is obvious concerning the operatorsm located
on sublatticesA andB. On these sites we may define~non-
diagonal! tx operators which reverse the value oftz at the
corresponding site. With this definition, we have

m~a!5ta
x , ~32!

m~b!5tb
xta

zta8
z ta9

z . ~33!

Theta
zta8

z ta9
z comes from the anticommutation ofm(b) with

its three neighbors (a, a8, and a9) belonging toA when
acting on a state such as Eq.~31!. Now we act with am(c)
on uta

z ,tb
z&. Upon movingm(c) to the right throughm(a)

and m(b), the state picks a signta
zta8

z ta9
z tb

ztb8
z tb9

z where
a,a8, . . . ,b9 are the six neighbors ofc. Then we use the fac
thatm(c)uc1&5uc1& so that we finally get the following rep
resentation:

m~a!5ta
x ,

m~b!5tb
xta

zta8
z ta9

z ,

m~c!5ta
zta8

z ta9
z tb

ztb8
z tb9

z . ~34!

This representation is independent ofh(c). As a conse-
quence, the spectrum of any Hamiltonian made out ofm
operators~such asHm) will be at least 2Nps/3-fold degenerate.
As we show later, this degeneracy is, in fact, much lar
;2Nps/2 but this already exhibits an extensive residual e
tropy at zero temperature.
3-11
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3. Mean-field approximation

The representation of Eq.~34! suggests a simple varia
tional ~or mean-field! approximation in which the system i
in a tensor product of single-site wavefunctionsuC&
5 ^ 1

Nps/3(uCA& ^ uCB&). All the sitesaPA are in the same
state as well as all thebPB:

uCA&5cos~u/2!u↑&1sin~u/2!u↓&, ~35!

uCB&5cos~f/2!u↑&1sin~f/2!u↓&. ~36!

We have two variational parametersu andf and the expec-
tation value of the energy per hexagon is

^ma&5sin~u!,

^mb&5cos~u!3sin~f!, ~37!

^mc&5cos~u!3cos~f!3,

E/Nps52 1
3 ~^ma&1^mb&1^mc&!. ~38!

Minimizing E we get

^ma&.0.2979; ^mb&.0.3104; ^mc&.0.7091 ~39!

E/Nps520.4391. ~40!

Becausê ma&Þ^mb&Þ^mc&, this state breaks the translatio
symmetry. It has some crystalline order with respect to
^m& variables. Notice, however, that such a state isnot a
dimer crystal@see Eq.~D9!#, since it can be chosen to hav
zero dimer-dimer correlations beyond a few lattice spacin
From the numerical diagonalizations, we estimate the ex
ground-state energy to beE/Nps.20.4460.02 ~see Sec. VI
and Fig. 18!, which agrees with the variational result with
error bars. It is interesting to compare these energies with
energy that one gets with a single-site wave function deri
from the translation invariant representation of Eq.~26!. The
later approximation givesE/Nps520.3248, which is signifi-
cantly higher. Two other mean-field states can be conside
from Eq. ~26!. On can use three different single-spin sta
uCA&, uCB&, anduCC& on three sublattices. Minimizing en
ergy with respect to the three related angles we getE/Nps
521/3. The corresponding variational state simply h
^ma&51, ^mb&5^mc&50. Enlarging the unit cell does no
help to lower energy. Indeed, using four sublattices lead
an even worse energy (E/Nps521/4, ^ma&51 and
^mb,c,d&50). The fact that the degenerate representa
gives rather bad energies can be explained from the fact
in such states the Ising degrees of freedom (tx or tz) are
completely uncorrelated on different sites:^t it j&5^t i&^t j&.
The situation is different in a representation such as Eq.~34!.
In that case nontrivial nearest-neighbor correlations
present even in simple tensor-product states such as the
we considered.

Although the good variational energy given in Eq.~40!
does not prove that the system indeed spontaneously br
the translation symmetry, it indicates that them model on the
kagome lattice is not very far from such a phase.53 The nu-
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merical results presented in Sec. VI indeed show that, at l
at short distances,^m(x)m(y)& correlations match the three
sublattice pattern.

4. Three-sublattice µ model

As for the one-dimensional model, we can generalize
kagomem model by letting the couplings be different o
sublatticesA, B, andC:

H52lA (
aPA

ma2lB (
bPB

mb2lC (
cPC

mc ~41!

and we focus onlA1lB1lC51 and lA ,lB ,lC>0. We
determined the ground state of the model within the me
field approximation of Eqs.~37! and~38!. The result is sche-
matically shown in Fig. 15~a qualitatively similar phase dia
gram is obtained with the degenerate representation!. We
obtain three phases. WhenlA dominates, the ground stat
hasu5p/2, ^ta

z&50, and^tb
z&Þ0. WhenlB is the strongest,

we havef5p/2, ^ta
z&Þ0, and ^tb

z&50. Close to thelC

point, we have^ta
z&Þ0 and ^tb

z&Þ0. Along the transition
lines~dashed line in Fig. 15! an expectation valuêtz& jumps
from zero to a finite value so that the transitions are fi
order in this approximation.

The mean-field prediction for the topology of the pha
diagram appears to be quite plausible. If there are ind
three phases, then, by symmetry, the point of interestlA
5lB5lC is the end point of three transition lines. It is n
clear whether the discontinuous character of these transit
is an artifact of the mean-field approximation or a robu
property. If the transitions are really first order, then them
model spontaneously breaks the translation invariance
realizes a crystal in them variables. It may also be thatlA
5lB5lC is a critical point. Although we have no definit
conclusion on this issue, some of the numerical results~sus-
ceptibility! presented in Sec. VI suggest a critical point.

5. Nondegenerate representation

The constructions above use at mostNps/3 commutingm̃
operators, but this is not the maximum numberNc of mutu-

FIG. 15. Mean-field phase diagram of them model on the
kagome lattice with three different couplingslA , lB , andlC on
three sublattices. Because the mean-field approximation break
symmetry which exchangesA, B andC, the transition lines~dashed!
do not precisely match the symmetry axis. Such symmetry sho
hold in the real system and was restored here for clarity. Transit
are first order.
3-12
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QUANTUM DIMER MODEL WITH EXTENSIVE GROUND- . . . PHYSICAL REVIEW B 67, 214413 ~2003!
ally commuting operators made out ofm̃. In fact, there are of
the order ofNc.Nps/2 Ising degrees of freedom that d
couple, as can be seen from the following argument. Div
the lattice infour sublatticesA,B,C,D as shown in Fig. 16.
The ‘‘spins’’ m̃(h) on theA sublattice mutually commute. In
addition, one can consider the ‘‘bow-tie’’ operatorsT̃
5m̃(1)m̃(2)m̃(3)m̃(4), centered on sites of theB sublattice
and involving neighboring ‘‘spins’’of theC and D sublat-
tices. TheseNps/4 bow-tie operators commute mutually an
with the operatorsm̃(h) from the A sublattice, which gives
us an ensemble ofNps/2 commuting operators.54 These con-
served quantities (m̃ andT̃) can be used to eliminate degre
of freedom on the two sublattices in a similar way as we
for the three-sublattice representation. However, now,
cannot avoid obtaining a nonlocal representation of them
algebra in terms of the spins living on theC and D sublat-
tices. The procedure is briefly explained in Appendix. C.

6. Arrow and dimer correlations

Using the m̃ and T̃ introduced above, it is possible t
demonstrate~see Appendix D! that dimer-dimer correlations
vanish identically beyond a few lattice spacings in any st
that is an eigenstate of all them̃(aPA) andT̃(bPB). Since
the eigenstates of the Hamiltonian can be choosen to
eigenstates of thesem̃(aPA) and T̃(bPB), one can choose
a basis of the ground-state manifold where every state
dimer liquid. The same result was found in Ref. 21 in
gapped dimer model. Here, because the ground state m
fold has a huge dimension, it is likely that some perturb
tions are able to select~out of the ground state manifold o
Hm) states with some dimer order. Even in such a case
expect dimer-dimer correlations to be very weak in the
cinity of Hm .

7. Fermionic representation

A version of the arrow representation can be given
terms of fermions. The advantage of such a formulation
that signs are naturally included. Unlike the one-dimensio
case, such a fermionic representation cannot be used

FIG. 16. Dividing the triangular lattice in four sublatticesA, B,
C, and D. The open dots represent the spins entering a bow
operator centered on theB sublattice. The black dots and the sta
correspond to the positions of spins and centers of the bow-tie
erators, respectively, forming a set of mutually commuting ope
tors.
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more to solve the model, since the Hamiltonian~15! cannot
be reduced to a quadratic form in fermions. However, it
still useful in gaining some insight about the model, for e
ample, it helps in understanding the extensive degenerac
the spectrum. In particular, it provides an argument t
shows that the degeneracy is;2Nps/2 not only on the kagome
lattice but also on any lattice made of corner-sharing t
angles provided the lattice of triangles~lattice H of Sec.
III A ! is bipartite.

We associate to each vertex of the kagome lattice a
mionic occupation number 0 or 1. For a given dimer co
figuration, the corresponding fermion configuration is giv
by the following rules: a defect triangle has either occupat
numbers 111 or 000. In other triangles, there is one dim
connecting the sites with equal fermion numbers, 00 or
There is a constraint on the parity of the number of fermio
on each triangle, alternating on adjacent triangles, for
ample, triangles pointing to the right in Fig. 5 have o
numbers of fermions, and those pointing to the left have e
number of fermions. It is not difficult to see that the arro
variables and the occupation number variables are essen
the same and that their constraints are of the same natur
particular, the counting of the degrees of freedom is sim
for arrows and fermions, the constraint for each trian
eliminating one spurious degrees of freedom.

On each kagome site there is a pair of creatio
annihilation fermionic operatorscj ,cj

† . As explained above
the dimer space is equivalent to the fermion Fock space, w
constraints on the occupation number on each triangle. A
the case of the chain, we transform the fermions into a p
of Majorana fermions,g j5(cj

†1cj ), g̃ j52 i (cj
†2cj ). The

algebra of operatorsm(h) can be realized now by using onl
operatorsg j ,

m~h!5 i)
j

→
g j

where the arrow means that the product is oriented~for ex-
ample, it starts at the leftmost site of the hexagon and r
clockwise!. With this representation them model contains six
fermionic creation or annihilation operators. Since two ad
cent hexagons have one kagome site in common, the as
atedm operators anticommute. Distantm ’s commute, since
they are constructed from an even number of fermions,
each operatorsm squares to 1. Similarly, one can construc

m̃~h!52 i)
j

←
g̃ j ,

with the product running in the opposite direction to that
m. These operators obey the same algebra asm(h) and com-
mute with the whole set of operatorsm. The symmetric role
played by operatorsg j and g̃ j suggests that one-half of th
degrees of freedom are not affected by the action of
Hamiltonian Eq.~15! and, therefore, that the degeneracy
the spectrum is of the order of 2Nps/2.

Let us note that operatorsm(h) and m̃(h) leave the con-
straints on the occupation numbers invariant, since t

ie

p-
-

3-13



o
n
a
h

es
g
b

e

i

in
i

es
om
e.

e
m

ms

s
a

d
tities

tain
er-

18.

is

-

e
lso
he
ion
the
sig-

the

lly
ive

ctly

za
ce
h a

is a
-
dot-

G. MISGUICH, D. SERBAN, AND V. PASQUIER PHYSICAL REVIEW B67, 214413 ~2003!
change by 2 the occupation number on each triangle. M
generally, products ofg on loops that visit each triangle a
even number of times also leave the constraints invariant
their action could be translated in the dimer language. T
most general operator that preserves the constraint~dimer
space! can be constructed from the products ofg and g̃ on
loops visiting each triangle an even number of times. Th
operators are the equivalent of Wilson loops in a gau
theory. Triangles where the constraint is not obeyed can
constructed by the action of strings ofg operators~they
could be useful for describing dimer configurations with d
fects, and therefore to introduce holons or spinons!. And fi-
nally, the vison creation operator is naturally constructed
this language as the product ofg i g̃ i on a string.

The fermionic representation allows one to study the
tegrals of motion and to prove that they are associated w
the closed straight lines on the lattice. In Appendix E, th
integrals of motion are constructed, and used to build a c
plete set of quantum numbers for the dimer Hilbert spac

VI. EXACT DIAGONALIZATIONS OF THE µ-MODEL

Because the nondiagonal matrix elements of them opera-
tor have different signs,Hm is not appropriate for large-scal
Monte Carlo simulations and, instead, we performed so

FIG. 17. Finite-size lattices used for the numerical diagonali
tions of them model. Each dot is a hexagon of the kagome latti
Nps5

1
3 N is indicated. The lattices on the top are compatible wit

three-sublattice structure whereas the others~bottom! are not. All
lattices exceptNps510,14,16b,16c are compatible with the four-
sublattice structure.
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numerical diagonalizations of the Hamiltonian. For syste
up toNhex5Nps516 hexagons (N548 sites! we diagonalize
it directly in the basis of dimer coverings~whose dimension
is 2Nps11) by using all lattice symmetries. For larger system
(Nps520, 24, 28, 36! we diagonalize the Hamiltonian in
representation where the extensive degeneracy~due to theNc
Ising quantities that commute with everym i) have been re-
moved~see Appendix C!. The diagonalization is performe
separately for each sector defined by the conserved quan
I. For the largest system (Nps548, N5144) we use a Lanc-
zos algorithm in this nondegenerate representation to ob
the first energies and wave functions. Thanks to these num
ous symmetries the largest vector size is only;106. The
lattices we used are displayed in Fig. 17.

A. Spectrum

The ground state energy per hexagon is plotted in Fig.
From this data we can estimate that^m&.20.4460.02 in
the thermodynamic limit. It is interesting to compare th
value with the energy of a simple 4-m problem H5m1
1m21m31m4 ~with periodic boundary condition so that ev
ery site is neighbor of the three others!, which has ^m&
52 1

2 in its ground state.55 The energy gap between th
ground state multiplet and the first-excited state is a
shown in Fig. 18. This quantity probably goes to zero in t
thermodynamic limit. Figure 19 shows the gap as a funct
of the ground state energy per hexagon. It appears that
samples with the largest gap are those whose energy is
nificantly lower than the thermodynamic estimate (^m&.
20.4460.02). This also points to a gapless spectrum in
limit of large systems.

The dispersion relation of the first-excited states usua
provides some useful insight. However, due to the extens
degeneracy, this brings no information for them model be-
cause the dispersion relation can be shown to be perfe
flat. Let uk& be an eigenstate with momentumk and energy

-
.

FIG. 18. Top: Ground-state energy per site. The dotted line
least-square fit of the data forNps.16. Bottom: energy gap be
tween the ground-state multiplet and the first-excited state. The
ted line is a guide to the eye (;e2aNps). When different values are
plotted for the sameNps, they correspond to different shapes~see
Nps516 and 24 in Fig. 17!.
3-14
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QUANTUM DIMER MODEL WITH EXTENSIVE GROUND- . . . PHYSICAL REVIEW B 67, 214413 ~2003!
Ek . The new stateuk1q&5(heiq•rhm̃(h)uk& has, by con-

struction, momentumk1q. Becausem̃ commute withHm ,
uk1q& is still an eigenstate with energyEk . This property is
just a consequence of the fact that acting with am̃ creates a
localizedzero-energy excitations.

From these data we propose two possible scenarios.
~1! An additional ground-state degeneracy associated w

some spontaneous symmetry breaking in the thermodyna
limit. As we will explain, it may be that the ground sta
orders in the three-sublattice pattern discussed in Sec. V
As we will explain, this scenario does not seem to be
most likely. In particular, if the system was a three-sublatt
crystal in them variables, the spectrum would have a grou
state with a small56 quasidegeneracy~ignoring the exponen-
tial factor coming from them̃ degrees of freedom! separated
by a gap to higher excitations. This does not seem to be
case since we could not identify a small set of energy lev
adjacent to the ground state above which a significant
could exist.

~2! In the second scenario, the low-energy states may
respond to a gapless mode of excitations in the system.
though we have no precise theoretical prediction for the
ture of such~critical! excitations in this two-dimensiona
dimer model, gapless excitations are reminiscent of the o
dimensional analog~which has fermionic critical excitation
at low energy, see Sec. V D concerning them model on the
chain!. According to the single-mode approximation di
cussed in Sec. VI D these gapless excitations would o
exist at a finite value of momentum.

B. Correlations

We looked for the possibility of long-rangedm im j corre-
lations in the ground state. We define a static structure fa
S(k) in the usual way:

S~k!5
1

Nps
^0umkm2ku0& ~42!

5
1

Nps
(
i , j

e2 ik•(r i2r j )^0um im j u0&, ~43!

where

mk5(
i

e2 ik•r im i . ~44!

FIG. 19. Gap as a function the energy per site forNps.12 ~data
of Fig. 18!. The line is a guide to the eye.
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These calculations were done numerically in a reduced
bert space whereNc;Nps/2 conserved quantities~made out
of m̃ and T̃ operators! are fixed to be61 ~nondegenerate
representation!. By construction the spectrum does not d
pend on these choices~that is, the origin of the entropy! but
it is also possible to check that^m im j& correlations do not
depend either on the sector. However, we stress that it is
principle, possible to have different correlations in a grou
state, which would be a linear combination of the grou
states of different sectors. This is similar to the question
dimer-dimer correlations discussed previously. We have
investigated these effects which are related to the poss
ordering pattern, which may be selected by small pertur
tions in the ground state manifold.

The results are summarized in Figs. 20–22. Figure
clearly indicates that the most important correlations app
at the border of the Brillouin zone. More precisely the co
ners of the Brillouin zonekB5(64p/3,0) and the middle
points of the borders of the Brillouin zonekA1

5(0,2p/A3), kA2
5(p,2p/A3), and kA3

5(p,p/A3) are

FIG. 20. Correlations ^m0m i&
c5^m0m i&2^m0&

2 in a 48-
hexagon system. The site 0 is at the center. The radius of the ci
is proportional tou^m0m i&

cu. Empty circles indicate negative corre
lations and the black ones are for^m0m i&

c>0

FIG. 21. Structure factorS(k)51/N^m2kmk& represented in the
first Brillouin zone of the triangular lattice forNps548 ~144
kagome sites!. The radius of the circle is proportional toS(k). S(k)
has a trivial divergence atk50 which is due to the fact that opera
tor ^m i& is nonzero at every site. This peak atk50 is not repre-
sented here.
3-15
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the reciprocal lattice points where the correlations are
strongest. kB correspond to a three-sublattice structu
whereaskAi

is related to a two-sublattice~stripelike! order. A

~weak! tendency to a three-sublattice ordering can been s
directly in Fig. 20, which represents real-space correlati
in the ground state of theNps548 sample~144 kagome
sites!. Almost all the sites with a positive correlation~black
circles! are located on the same sublattice~according to a
three-sublattice decomposition! as the reference site.

To check whether these correlations could remain lo
ranged in the thermodynamic limit we plotS(k)/Nps as a
function of Nps ~see Fig. 22!. As a result,S(k)/Nps seems to
extrapolate to a very small~possibly 0! value in the limit of
large systems. This suggests neither two- nor three- su
tice ‘‘crystalline’’ order in the expectation values of them
operators. However, the data atk5kB should be compared
with the mean-field state described in Sec. V E 3. Accord
to the expectation values given by Eq.~39! we should have
S(k)/Nps.0.0182 in the thermodynamic limit. While the ex
trapolation of the numerical results of Fig. 22 cannot dist
guish such a small-order parameter from a disordered~or
critical! phase, the prediction of the mean-field approxim
tion ~dashed line in Fig. 22! turns out to be significantly
different from the exact ones. In the mean-field approxim
tion S(kB) is given byS(kB)/Nps.0.018210.6279/Nps ~the
1/Nps contribution is just the local contribution of a given si
and its six neighbors!. On the other hand, the exact value
S(kB)/Nps decays much faster withNps. This means that the
reduction of the crystal order parameterS(kB)/Nps with the
system size is mainly caused by long-wave length fluct
tions rather than by local contributions. This is a serio
indication that the three-sublattice crystal is unstable w
respect to these fluctuations.

FIG. 22. Top: structure factor atk5kA . Bottom: Structure fac-
tor at k5kB . The dotted lines are obtained by a least-square fi
the forma1bNps

211cNps
22 . The dashed line is the mean-field@Eq.

~40!# prediction forS(kB)/Nps. The quick reduction of the crysta
order parameter with the system size~compared with the mean-field
result! suggests that the crystal is unstable to fluctuations.
analysis of the related susceptibilities confirms thatS(k)/Nps is in-
deed likely to extrapolate to zero whenNps→`.
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C. Static susceptibility

To get more insight into the possibility of some crystallin
order in them variables we calculated the static susceptib
ties x(k):

x~k!5
1

2Nps

]^mk1m2k&
]l

, ~45!

where l is the strength of an infinitesimal symmetry
breaking perturbation,

Hl5(
i

m i2
1

2
l~mk1m2k! ~46!

x(k) is obtained numerically by measuring the expectat
value ofmk1m2k in the ground state of the Hamiltonian Eq
~46! in the presence of a small perturbation. The suscepti
ity is obtained by extrapolating the result tol50.

The static susceptibility is a rather sensitive probe sinc
must diverge asNps

2 in systems that spontaneously break t
translation symmetry in the thermodynamic limit.57 On the
other hand, it remains finite if there is no ordering at t
corresponding wave vector. The results fork5kA and k
5kB are displayed in Fig. 23.x(k) shows no tendency to
diverge atk5kA and the increase withNps of x(kB) is sig-
nificantly slower than;Nps

2 , as suggested by the rather goo
fit obtained withx(kB).aNps1b ~dotted line in Fig. 23!.
For these reasons we think that the system does not dev
long-rangedm im j correlations in the thermodynamic limit
The data forx(kB) ~which neither diverges likeNps

2 nor stays
constant! might be interpreted as a proximity to acritical
point where a three-sublattice structure would appear.

D. Long-wavelength fluctuations

We now turn to the analysis of the long-wavelength flu
tuations in the system. The structure factorS(k) is repre-
sented as a function ofuku in Fig. 24.S(k) seems to vanish a
least asS(q);uku2 and probably faster. A;uku4 behavior

f

e

FIG. 23. Static susceptibilityx(k) for the wave vectors (k
5kA and k5kB) where correlations are the strongest. Long-ran
order with spontaneous symmetry breaking would implyx;N2,
which does not appear to be satisfied. The dotted line is a le
square fit of the formx(kB).aN1b.
3-16
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looks plausible and is reminiscent of quantum Hall effec58

As explained before, the dispersion relation is flat in t
model. However, one may be interested in the excitati
that can be created by the action of them operatorsonly

~excludingm̃). Such a variational excited state with mome
tum k can be constructed from the ground state in the sp
of the single-mode approximation:

uk&5mku0&. ~47!

The energy~relative to the ground-state! of uk& is

v~k!5

1

2Nps
†m2k ,@H,mk#‡

S~k!
. ~48!

Since the numerator~oscillator strength! behaves, as usua
as ;uk2u at small uku, we find thatuk& is not a low-energy
excitation as soon asS(k) vanishes likeuku2 or faster—
which seems to be the case. This is suggestive of a non
gap for zero-momentum excitations.

VII. DISCUSSION AND CONCLUSIONS

We have introduced a QDM on the kagome lattice with
kinetic energy that allows from three to six dimers to res
nate around hexagons. The crucial difference with previ
QDM is that dimers move with amplitudes that have no
trivial signs inherited from the underlying spin-1

2 model. Ex-
ploiting the algebraic properties of the conserved quanti
(m̃ operators!, we showed that the model has an extens
entropy at zero temperature—16 ln(2) per kagome site—and i
a dimer liquid.

The starting point of this study was the spin-1
2 Heisenberg

model on the kagome lattice. Concerning this problem,
main result is that a high density of singlet states at l
energy might have a real quantum origin and may not jus
the remainder of the local degeneracies of the class
model. The mechanism that produces the entropy of thm
model requires one to use nonlocal degrees of freedom
order to compute the spectrum in a representation that el

FIG. 24. Long-wavelength behavior of the structure factorS(k)
for different sample sizes.
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nates the degeneracy. We are not aware of any other m
with a similar behavior. Going from the KAFH model to th
m model we made some crude approximations. The first
was to reduce the spin Hilbert space to a short-range R
one. We provided several arguments to support this appr
mation but some additional studies would be required to a
lyze this question further. The second drastic approximat
was to reduce the dimer dynamics induced by the Heisenb
interaction to that of them model and itssigns. This can be
qualitatively justified for the KAFH in the temperature re
gime corresponding to the low-temperature peak of the s
cific heat. If that picture is correct, the degrees of freed
involved in that peak would correspond to the;Nps/2
5N/6 uncoupled degrees of freedom of them model. Them
model can be defined on any lattice made of corner-sha
triangles, it could, therefore, provide a rather general exp
nation for a large entropy at low temperature in the cor
sponding frustrated spin-1

2 models. Determining if some or
der eventually develops at much lower temperatures wo
amount to analyze a degenerate perturbation theory in
ground state manifold of them model.

An important question is to know whether them model
realizes a new phase or if it is at a critical point. We ha
shown that the most serious candidate for an ordered ph
if any, is the three-sublattice crystal. However, we gave s
eral indications~spectrum, correlations, and susceptibilit!
suggesting that it is not stable. Instead we suggest that
system might be at a critical point. If we think of a dime
model as a system of hard-core bosons, it is interesting
compare our findings with some known bosonic phases.
us first come back to the gapped RVB state realized in
solvable QDM of Ref. 21. That state, which is the equ
amplitude superposition of all dimer configuration
~Rokhsar-Kivelson18 state!, is very similar to a Bose-Einstein
condensatein the sense that its wave function can be o
tained by putting all dimers in the same zero-moment
state.59 The important difference from a conventional supe
fluid is that the dimer model has no U(1) gauge symme
~and therefore no gapless ‘‘sound’’ mode or conserved in
ger charge! but a discreteZ2 gauge symmetry.21 With that
comparison in mind, the ground state of them model would
neither be a condensate nor a crystal but it hasgaplessexci-
tations. This is rather unusual in a model that has no cont
ous symmetry at all. In addition, our model has a struct
factor S(q) for ^mm& correlations, which decays asuqu2 or
faster in the limitq→0. In a single-mode approximation thi
would imply a gap forq50 excitations.

In order to study the spectrum of them model we used a
representation in which the degrees of freedom respons
for the extensive entropy are frozen. Them model is local in
the dimer variables but the effective Hamiltonian describ
the nondegenerate spectrum turned out to be nonloca
terms of the original dimers. These effective long-ranged
teractions between physical degrees of freedom might be
important ingredient for the appearance of an exotic liqu
From this point of view, there might be some similaritie
between them model and some two-dimensional quantu
systems of Bosons with long-ranged interactions. Exotic
uid states, which are not superfluid, have been proposed
3-17
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these systems, including a quantum hexatic phase.60,61 On
the other, hand a critical Bose fluid can exist without lo
range interactions and such a phase can be stabilized b
clic ring-exchanges.62,63 A striking feature of these new
phases is the existence of gapless excitations alonglines in
the Brillouin zone, as in a Fermi liquid. We have no dire
indication of such a behavior in the kagomem model, except
for the existence of a fermionic representation, but suc
scenario is certainly an interesting possibility that should
tested in future studies.

ACKNOWLEDGMENTS

We are grateful to C. Lhuillier, F. Mila, R. Moessner, an
M. Oshikawa for several fruitful discussions. Numerical d
agonalizations of QDM models were done on the Comp
alpha server of the CEA under Project No. 550.

APPENDIX A: ZENG AND ELSER’S PSEUDOSPINS
REPRESENTATION OF DIMER COVERINGS

Zeng and Elser~ZE! realized5,6 that a close correspon
dence between Ising configurations of pseudospins sitting
hexagons and dimer configurations on the kagome lat
~within a given topological sector! could be used. We use
this representation in a previous work21 to define an exactly
solvable quantum dimer model. In this section we review
pseudospin representation.

1. sz component

We first need an~arbitrary! reference dimer configuratio
uD0&. We will associate a pair of pseudospin configuratio
$sh

z561%hPhex. with any dimer configurationuD& ~belong-
ing to the topological sector ofuD0&) in the following way.

~1! Draw the loops of the transition graph of^D0uD&.
~2! These loops must be considered as domain walls s

rating hexagons where the pseudospins are up and hexa
where they are down. This can be done in a consistent
becauseD andD0 are supposed to be in the same sector
any closed path will necessarily cross an even numbe
domain walls.

~3! There is a two fold redundancy in the above prescr
tion because the up and down hexagons can be excha
without changing the loop pattern. Since there is no natu
way to decide where is the interior and where is the exte
of a closed loop on a finite sample, a pseudospin config
tion $sh

z5s(h)% and its reversed counterpart$sh
z5

2s(h)% represent the same dimer covering.
This establishes a one-to-one correspondence betw

dimer coverings of a given topological sector andpairs of
pseudospin sates related by a global pseudospin flip.
proof can be done in two steps.

~a! If two dimer configurationsD and D8 are associated
with the same pseudospin state~up to a global pseudospi
reversal!, they are identical. The transition graph^DuD8& can
be viewed as the ‘‘difference’’ between graphs^D0uD& and
^D0uD8&. This means that thêDuD8& will have loops sepa-
rating regions where the pseudospins coincide inD andD8
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and the region where they are different. SinceD andD8 have
the samesz on every hexagon,̂DuD8& cannot contain any
hexagon and therefore contains no loop at all.

~b! Any pseudospin configuration has a correspond
dimer state. The transition graph betweenD0 and the dimer
configuration we are looking for will separatesz511 hexa-
gons fromsz521 ones. The actual path of these loops w
depend onD0 but for a given reference dimerization on
one such path exists. The reason for this is easily unders
by looking at a single hexagon: whateverD0 may be, there is
always a single loop that surrounds this hexagon only.

We can check the above property by a direct counting.
the one hand, we have 2N/3 pseudospins configurations an
2N/321 pairs of nonequivalent configurations. On the oth
hand, there are 2N/311 ~see Ref. 1! dimerizations on a
kagome lattice withN sites and periodic boundary cond
tions. The agreement is found by remarking that the num
of dimerizations has to be divided by 4 to get the size o
single topological sector.64

2. Pseudospin flip operatorsx

One interest of the ZE pseudospin representation is
thesh

x operator, which flips the pseudospin at positionh, can
be expressed in a simple way in terms oflocal dimer opera-
tors. It seems that ZE did not realize this very useful prope
of their representation. The simplest dimer moves invo
loops around hexagons. These 32 loops are represente
Table I. The corresponding operators

L̂a5uLa&^L̄au1uL̄a&^Lau ~A1!

shift the dimers along the loopLa if it is possible and anni-
hilate the state otherwise. We will now prove thatsx is the
sum of all the 32 kinetic operators of hexagonh:

sx~h!5 (
a51

32

L̂a . ~A2!

The fact that this sum of dimer operatorsL̂a realizes the
spin algebra is not obvious. In particular, the fact that th
operators commute at two neighboring hexagonsh and h8

must be verified, since, in general,@ L̂a(h),L̂a8(h8)#Þ0.
Consider an arbitrary dimerizationuD& in the vicinity of

hexagonh. The crucial point is that all the kinetic operato
L̂a(h) but one annihilateuD&. This is a property of the
kagome lattice that we used before: for any given dimeri
tion one and only one loop can surround hexagonh. So
uD8&5sx(h)uD& is a dimer configuration that differs from
uD& by a single loop aroundh. Using thesz base to represen
dimer coverings we know that such a state is unique an
the state obtained fromuD& by flipping the pseudospin ath.
Thus we have shown thatsx(h)sz(h)52sz(h)sx(h).

One can use a very similar reasoning to show thatsx(h)
and sx(h8) commute whenhÞh8, but this result is most
easily obtained by the arrow representation.
3-18
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3. Counting dimer coverings with pseudospins

The Ising basis of ZE’s pseudospins provides a way
counting the numberN of dimer coverings on any latticeK
that is the medial lattice of a trivalent one. The result is

Ndim. coverings5a2Nps21, ~A3!

whereNps is the number of pseudospins anda is the number
of topological sectors, it is related to the genus bya522g in
the two-dimensional cases. The factor 221 comes from the
fact that a dimer configuration corresponds to two ps
dospin states. Using the Euler relation we can check that
~A3! indeed coincides with the result obtained with the arr
representation@Eq. ~1!#:

Ndim. coverings522g2N/31222g2152N/311. ~A4!

APPENDIX B: µ KINETIC OPERATORS AND ZE
PSEUDOSPINS

In order to write m with sz and sx only, we need to
express the signe(h) of Eqs.~10! and~12! in terms of thesz

operators on the neighboring hexagons. We will do this w
the help of the arrow representation. The argument gene
izes easily to them̃ operators.

First draw the arrow representation of the referen
dimerizationuD0& in the vicinity of hexagonh, as in Fig. 12.
Each neighboring hexagon ofh has two arrows that belon
to the star ofh. These arrows can either (A1) point toward
the exterior ofh, (A2) point toward the interior ofh, or ~B!
point in two different directions. In Fig. 12, for example, w
have no hexagon in caseA1 , two in caseA2 , and four in
caseB. First look at the change innout(h) when a single
neighboring pseudospin is flipped with respect to the re
ence configuration~it has sz521). If the corresponding
hexagon is of typeA1 (A2), nout(h) is decreased~increased!
by 2 units. If that hexagon is of typeB, nout(h) is unchanged.
On a state where a single pseudospin is down, we h
therefore, showed thate(h)5e ref(h)) i PAref(h)s

z( i ) where

Aref(h) is the set of the n eighbors ofh that are of typeA1 or
A2 in the reference dimerization.e ref(h) is the value ofe(h)
in the reference state.

Now look at the value ofe(h) when the neighboring
pseudospins are in an arbitrary statesz(hi)561. If two
pseudospins are flipped on hexagons that are themselves
neighbors, one arrow is flipped twice and therefore rema
unchanged. This adds toe(h) a 21 factor, which multiplies
the single pseudospin factor discussed above. This ca
seen on the example of Fig. 12. If the pseudospin of
hexagon containing the sites (28,3,38) ~type A2) is flipped,
the signe(h) changes; but if hexagon (18,2,28) ~type B) is
flipped, e(h) is not affected. However, ifboth hexagons are
flipped, e(h) is unchanged too. In addition to thesz(hi)
factors coming from hexagons belonging toAref(h), we must
add a21 contribution for eachpair of consecutive pseu
dospins that are simultaneously in asz(hi)521 state. Such
a factor is given by
21441
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z~hi 11!#, ~B1!

wheref is equal to21 when the two pseudospins are bo
down sz(hi)5sz(hi 11)521 and 1 otherwise. The produc
runs over the six neighborshi of h numerated in a cyclic
way. f can be explicitly written as a polynomial:

f @s1
z ,s2

z#5 1
2 ~11s1

z1s2
z2s1

zs2
z!. ~B2!

We eventually have an expression fore(h) as a polynomial
of ZE pseudospins operators located on neighbors ofh:

e~h!5e ref~h! )
i PAref(h)

sz~ i !)
i 51

6

f @sz~hi !,s
z~hi 11!#.

~B3!

The left-hand side is both a local and a referen
independent operator. On the right-hand side, the informa
on the arrows in the reference configuration is presen
several places: ine ref(h), in the set of sitesAref(h), as well
as in thesz operators. It is possible to check directly on th
expression thate(h)sx(h) satisfy them algebra.

APPENDIX C: REMOVING THE EXTENSIVE
DEGENERACY

To perform the explicit diagonalization, it is useful to re
move the extensive degeneracy. Let us denote byCa , a
51, . . . ,Nc , the commuting and independent operators
troduced in Sec. V E 5, andca561 their eigenvalues. We
can decompose the Hilbert space in eigenspaces$ca%, using
the projectors

P6
a 5 1

2 ~16Ca!.

It is then sufficient to work within the reduced space whe
ca are all equal to 1, for example. The reduced space is t
generated as follows. Consider the stateu$s(h)51%;$I k%&
where all s(h)51, and the integrals of motion have som
values$I k%. This state exists, is unique, and has the prope
of transforming the action ofm(h) into that of m̃(h) for all
h. We project this state to the eigenspace$ca%51,

uV;$I k%&5)
a

P1
a u$s~h!51%;$I k%&

and then generate the whole subspace$ca51% by the action
of the monomials inm

)
h51

Nps

m~h!nhuV;$I k%&,

with nh50,1. Roughly half of the spins can be eliminate
recursively by the following procedure. For spins belongi
to theA sublattice, we bringm(h) at right using the commu-
tation relations, we transform it inm̃(h), which is 1 by con-
struction. Some of the spins can be eliminated using the
tegrals of motionI k . And finally, one of the spins entering
bow-tie operator can be eliminated by replacing it with t
3-19
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product of the other three spins in the bow tie and the op
tor T(h). The latter operator is brought to the right, tran
formed in T̃(h) whose value is 1. Similarly, one can co
struct the eigenspace for any values of$ca%. The passage
from a sector of fixed$ca% to another can be realized b
operatorsm̃(h) belonging to one of the sublatticesB,C,D.
Since these operators commute with the Hamiltonian,
spectrum ofHm will be the same in all the sectors, whic
proves that the global degeneracy of the spectrum is 2Nc.

The action of the Hamiltonian on the reduced basis
computed using the same procedure as above. The fact
we work in a space with dimension divided by 2Nps/2 allows
us to perform numerical diagonalization for relatively lar
systems, up toNps548.

APPENDIX D: DIMER-DIMER CORRELATIONS

We show here that the eigenstates of the Hamiltonian
the m model can be chosen to have vanishing dimer-dim
correlations beyond a few lattice spacings.

Let us consider a triangle (1,2,3) on the kagome latti
On these three sites we may define an arrow operatoai
whose value is 1 if the corresponding arrow points tow
the interior of the triangle and 0 otherwise. With this defin
tion, the dimer occupation numbern12 on bond (12) isn12

5a1a2 . Now we assume that we have three operatorsÔi
( i 51,2,3), which satisfy

; i , Ôiai5aiÔi , ~D1!

; iÞ j , Ôiaj5~12aj !Ôi , ~D2!

Ôi u0&56u0&. ~D3!

These relations just mean thatÔ1 flips the arrows on sites 2
and 3 but does not touch the arrow 1, etc.u0& is a ground-
state of the model which is also an eigenvector forÔi . No-
tice that if Ô1 and Ô2 exist, Ô35Ô1Ô2 is a valid choice.
Under these conditions, we show thatni are uncorrelated
with any other bond that is unaffected by the threeÔi . As
we will explain,Ôi will be realized as local combinations o
m̃ andT̃. From Eqs.~D1! and~D2!, it is simple to check that

n12Ô35Ô3~12n122n232n31! ~D4!

~plus cyclic permutations!. Now let X be any operator tha
commutes with the threeÔi @later we will choseX51 or
X5nkl , where (kl) is a remote bond#. Using Eqs.~D3! and
~D4!, the correlation̂ Xni j & becomes

^Xn12&5^0uXn12~Ô3!2u0& ~D5!

5^0uÔ3X~12n122n232n31!Ô3u0& ~D6!

5^X&2^Xn12&2^Xn23&2^Xn31&. ~D7!

Using the relations obtained by cyclic permutations and so
ing the three linear equations we find
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^Xni j &5 1
4 ^X&. ~D8!

Using X51 we get that the dimer density is14 and usingX
5nkl ~a remote link! we find

^nklni j &5 1
16 5^n&2. ~D9!

In order to complete the demonstration we still have to sh
that operatorsÔi can be constructed for any triangle. Let th
state u0& be an eigenstate ofm̃(aPA) and T̃(bPB) de-
scribed in the preceding section. Depending on its posit
relative to the four sublatticesA, B, C andD, a triangle (123)
~on kagome! will demand slightly different constructions fo
its Ôi operators. For brevity, we will only consider the ca
of a triangle located between a hexagonaPA and a hexagon
bPB. It generalizes straightforwardly to the other cases.
i 51 be the common site of hexagonsa andb, i 52Pa and
i 53Pb. It can be checked that the following choice satisfi
Eqs.~D1! and ~D2!:

Ô15T̃~b! ~D10!

Ô25m̃~a!T̃~b! ~D11!

Ô35m̃~a! ~D12!

The result given Eq.~D9! shows that dimer-dimer corre
lations are extremely short ranged.65

APPENDIX E: FERMIONIC REPRESENTATION AND
INTEGRALS OF MOTION

Integrals of motion. Let us analyze the case of close
systems with the topology of the torus, which is the geo
etry we used for the numerical diagonalization. The lattice
which them operators live is triangular and it is made by th
centers of hexagons of the kagome lattice. We callm1 , m2 ,
m3 the number of closed lines in each elementary direct
on the lattice, having lengthn1 , n2 , n3 respectively,66 so that
Nps5m1n15m2n25m3n3 . We denote byM the total num-
ber of such lines,M5m11m21m3 . We label byLk , k
51, . . . ,M the closed straight lines on the triangular lattic
andl k andl k11 the lines on the corresponding kagome latti
bordering the lineLk ~with obvious periodicity conditions!.
Associated with each kagome linel k , we can define the fol-
lowing operators

Gk5 )
j P l k

→
g j , G̃k5 )

j P l k

←
g̃ j ,

where the products run over the sitesj of the kagome linel k ,
with some ordering indicated by the arrow. Since every l

l k visits any hexagon zero or two times, operatorsGk andG̃k

commute with all the operatorsm(h) and m̃(h). From the
correspondence with the dimer states, we know thatGk and

G̃k correspond to dimer moves on nontrivial loops around
torus, so they change the topological sector.67
3-20
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In each topological sector we can construct the follow
integrals of motion, associated with the closed straight li
Lk on the triangular lattice:

I k5~2 i !nGk
→Gk11

← 5 )
hPLk

→
m~h!,

Ĩ k5~2 i !nG̃k11
→ G̃k

←5 )
hPLk

←
m̃~h!,

wheren denotes the number of hexagons onLk and the ar-

rows denote the ordering inGk ,G̃k . The third member of
both equalities is invariant by circular permutation of t
sites on the lineLk.

The two sets of integrals of motion$I k%, $ Ĩ k% are not
independent. To check this, we use the commuting varia

s~h!5m~h!m̃~h!,

measuring the parity number of fermions around the h
agonh,

s~h!5)
j

g j g̃ j5~2 i !6)
j

~122nj !.

Then,

I kĨ k5~21!n )
hPLk

s~h!5~21!n,

where the last equality is a consequence of the constrain
the fermion number around the two types of kagome
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angles. Moreover, integrals of motion corresponding to
Lk lines with the same orientation on the lattice are not
independent,

)
k51

m1

I k5~2 i !m1n15~2 i !Nps, ~E1!

and similarly for the other two orientations. Such a constra
on physical states is not unexpected, since the product o
lines with some orientation contains all the operatorsm(h)
exactly once, that is, all the operatorsg i twice, so it has to be
proportional to the identity.

In conclusion, there are at mostM23 independent inte-
grals of motion, whereM is the number of different closed
straight lines one can draw on the triangular lattice wrapp
on the torus~in some cases, theM23 lines are not indepen
dent and some of the quantitiesI k can be written as product
of the others!.

Basis for the Hilbert space. The commuting quantities
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Due to the M22 independent constraints)hPLk

s(h)51,
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